
www.manaraa.com

Data Structures with Unpredictable Timing

Darrell Bethea and Michael K. Reiter

University of North Carolina, Chapel Hill, NC, USA

Abstract. A range of attacks on network components, such as algorith-
mic denial-of-service attacks and cryptanalysis via timing attacks, are
enabled by data structures for which an adversary can predict the dura-
tions of operations that he will induce on the data structure. In this paper
we introduce the problem of designing data structures that confound an
adversary attempting to predict the timing of future operations he in-
duces, even if he has adaptive and exclusive access to the data structure
and the timings of past operations. We also design a data structure for
implementing a set (supporting membership query, insertion, and dele-
tion) that exhibits timing unpredictability and that retains its efficiency
despite adversarial attacks. To demonstrate these advantages, we develop
a framework by which an adversary tracks a probability distribution on
the data structure’s state based on the timings it emitted, and infers
invocations to meet his attack goals.

1 Introduction

An adversary’s ability to predict the timing characteristics of selected interac-
tions with a networked component is instrumental in a wide range of potential
attacks on that component or the network it defends. For example, algorithmic
denial-of-service attacks depend on the adversary crafting requests that he can
predict will be particularly costly for the component to process (e.g., [1–3]).
Other attacks can benefit from predictable timings, whether they be expensive
or not. For example, remote timing attacks on components that use crypto-
graphic keys (e.g., [4, 5]) benefit if the adversary is able to predict the processing
time other than that involving the cryptographic key being cryptanalyzed, so
that this “noise” can be subtracted from the observed timings to obtain those
timings related to the key itself.

In this paper we abstract from these scenarios the basic problem of develop-
ing data structures for which the timing of any particular operation is unpre-
dictable. We consider an adversary who knows the implementation of the data
structure, and who has adaptive and exclusive access to it: the adversary can in-
voke operations on the data structure and observe their timings (and responses)
in order to discern the structure’s underlying state, without interference from
other queries potentially modifying that state. Despite this power, we require
that the data structure resist the adversary’s attempts to predict how long its
future invocations will take to service. Moreover, so as to rule out implemen-
tations that obscure timings by making their operations vastly more expensive,



www.manaraa.com

we require that the performance of the operations be competitive with other,
timing-predictable implementations of the same abstract data type, even against
an adversary bent on decaying their efficiency.

As a first step in this direction, we propose an implementation of a set that
supports insertions, deletions, and membership queries, and that meets the re-
quirements outlined above. Our set implementation is derived from skip lists, a
popular data structure for implementing sets, but exhibits timing unpredictabil-
ity unlike regular skip lists (as we will demonstrate). In particular, our imple-
mentation introduces novel techniques for modifying skip lists during queries, so
as to make them more timing-unpredictable with little additional overhead.

To quantify the timing unpredictability of our proposed set implementation,
we develop a methodology by which an adversary, based on the timings he ob-
served for his previous operation invocations, can track a probability distribution
on the state of the data structure. We also show how the adversary can use this
distribution to infer an invocation that will best refine his ability to predict tim-
ings of future invocations, or that will best manipulate the data structure so as
to make it maximally inefficient. We have implemented this attack methodology
in a tool to which we subject our proposed set implementation.

The results of our evaluation indicate that our proposed set implementation
is substantially more timing-unpredictable than a regular skip list. Moreover, we
show that our set implementation is efficient, in that it retains its good perfor-
mance despite the contrary efforts of the adversary, while the adversary achieves
considerable decay of a standard skip list’s performance. These advantages de-
rive from the adversary’s uncertainty as to the shape of the data structure at
any point in time, in contrast to a standard skip list, which the adversary can
unambiguously reverse-engineer in little time.

To summarize, the contributions of this paper are as follows. We introduce
the problem of achieving timing unpredictability in data structures. We pro-
pose a novel set implementation that improves timing unpredictability over that
achieved by other set implementations at little additional cost. We demonstrate
these advantages through a methodology by which an adversary determines re-
quests to best refine his ability to predict timings of future operations or to decay
the performance of those operations.

2 Related Work

In this paper we explore the construction of a data structure that alters its
shape (and thus its timing characteristics) randomly, even as frequently as on a
per-operation basis. This high-level idea is borrowed from approaches to render
timing attacks against cryptographic implementations (e.g., [4, 5]) more difficult,
by randomizing the cryptographic secrets involved in the computation in each
operation. A well-known example is “blinding” an RSA private key operation
md mod N by computing this as (mre)dr−1 mod N for a random r ∈ Z

∗
N [4].

This paper is a first step toward applying randomized blinding techniques in
data structures, as opposed to particular cryptographic implementations.



www.manaraa.com

Algorithmic denial-of-service attacks, in which an adversary crafts invoca-
tions that he can predict will be costly to process, have led to proposals to use
data structures less susceptible to such attacks (e.g., [2, 3]). These data struc-
tures generally fall into two categories: those that bound worst-case performance
and those that attempt to make worst-case inputs unpredictable. The first cate-
gory consists mainly of self-balancing data structures (e.g., splay trees [6], AVL
trees [7]), which make no attempt to limit an adversary’s ability to predict op-
eration costs. Thus, while these data structures keep access costs consistently
below some desirable asymptotic threshold, the costs are typically easy to pre-
dict, allowing these structures to be exploited in other forms of timing attacks.
The second category consists of data structures that mitigate algorithmic denial-
of-service attacks by limiting an adversary’s ability to induce worst-case perfor-
mance reliably. Typically, this limiting is accomplished using either a randomized
insertion algorithm (e.g., randomized binary search trees [8]) or a secret unknown
to the adversary (e.g., keyed hash tables [9]). We show in Section 4 that ran-
domized insertion is not sufficient to achieve unpredictability versus an adaptive
adversary. A deterministic algorithm based on a fixed secret faces the same dif-
ficulty: the adaptive adversary’s ability to probe the data structure allows him
to uncover its shape and thus its timings, even without knowing the secret.

Skip lists, from which our proposed set implementation is built, have been
widely studied, and many variants have been proposed. Most are motivated by
performance, to improve access time for certain input sequences or in certain
applications (e.g., [10–13]). Others are skip-list variants that can safely be used
by concurrent processes or in distributed environments (e.g., [14–16]). Aspects
of some of these variants bear similarities to elements of our proposal, but none
of them addresses timing predictability or performance under adversarial access.

Also related to our work is online algorithm analysis (e.g., [17]), which deals
with algorithms that process requests as they arrive (“online” algorithms) and
how they perform compared to optimal algorithms that process the same re-
quests all at once (“offline” algorithms). Of particular interest here is the field’s
analysis of adaptive adversaries that select each request with knowledge of the
random choices made by the online algorithm so far. Our adversary is weaker,
selecting new requests knowing only the duration of each previous request. Dura-
tions leak information about the algorithm’s random choices but may not reveal
those choices unambiguously. Our weaker adversary is motivated both by a prac-
tical perspective — an adversary can easily measure durations but would rarely
be given all random choices made by the algorithm — and also by our hope to
explore the extent to which randomization can limit the adversary’s knowledge
of the data structure’s future timing behavior. Assuming the adversary knows
all prior random choices would preclude this exploration.

3 Goals

As discussed in Section 1, a common thread in many attacks is the adversary’s
ability to predict the timing of operations that will result from his activity (and



www.manaraa.com

correspondingly to manipulate the data structure to produce desirable timings).
These timings can be particularly large, as in an algorithmic denial-of-service
attack. Or, it may simply suffice that the timings can be predicted accurately,
whether they be large or not, e.g., to minimize the “noise” associated with other
activities when cryptanalyzing keys via timing attacks.

As an illustrative example, consider that a server using OpenSSL does ap-
proximately ten set lookups (implemented using hash tables) between receiving
a ClientHello message and sending its ServerKeyExchange response. Because the
ServerKeyExchange message often involves a private key operation — signing
the parameters for Diffie-Hellman key exchange — the timing the client observes
between messages involves both set lookup operations and the private key opera-
tion. As such, having an understanding of the timing of the set lookup operations
can enable an adversary to obtain a more fine-grained measurement of the pri-
vate key operation. As another example, popular interpreted languages such as
Perl and Python incorporate associative arrays implemented as sets (specifically
using hash tables) as a primary built-in data type, providing an avenue for ex-
ploiting timing in a range of applications written in those languages. Perl’s hash
function has already been shown to be vulnerable to denial-of-service attacks [3],
and Python’s hash function is intentionally trivial — integers, for example, hash
to their lower-order bits.

The goal of our designs in this paper will be to limit an adversary’s ability to
predict and manipulate the timing of his future operations on a data structure.
More precisely, we consider an abstract data type with predefined operations,
each of which accepts some number of arguments of known types. Motivated by
the examples above, and to make our discussion more concrete, we will use a set
data type (Set) as a running example throughout this paper. A data structure
S of type Set would typically support the following operations:

– S.insert(v) adds value v to S if it doesn’t already exist, i.e., S ← S ∪ {v};

– S.remove(v) removes v if it is in S, i.e., S ← S \ {v};

– S.lookup(v) returns v if v ∈ S, or ⊥ otherwise.

Invocation Return value Duration

1. S.insert(7) “ok” 4
2. S.insert(12) “ok” 6
3. S.lookup(7) 7 3

...
...

...

Fig. 1. Example execution

We give an adversary adaptive ac-
cess to S; i.e., the adversary can per-
form any invocation of his choice, and
receives the response to this invoca-
tion before choosing his next. Since
the adversary can time the duration
until receiving the response, we model
this by returning not only the return
value from the invocation, but also the
duration of the invocation (in some
appropriate unit of time that we will leave unspecified for now). For example,
an adversary’s interaction with the set S might look like Figure 1.

The notion of timing-unpredictability that we study in this paper comprises
two types of requirements, which we describe below.



www.manaraa.com

Invocations must be efficient: Efficient operation is not a requirement unique
to timing-unpredictability, obviously, as it has been a primary goal of algorithm
design since its inception. We explicitly include it here, however, to emphasize
that we cannot sacrifice (too much) efficiency in order to gain unpredictability.
Here we measure efficiency in terms of the extent to which the above adaptive
adversary can manipulate the data structure to render invocations of his choice
as expensive as possible.
Timing of invocations must otherwise be “unpredictable”: Intuitively,
to be timing-unpredictable, we require that the adversary be unable to predict
the time that invocations will take. More specifically, after observing the tim-
ings associated with operations of his choice, the adversary can generate the
probability distribution of possible timings that each next possible invocation
could produce. We measure unpredictability by the minimum of the entropies of
the timing distributions for all next possible invocations, i.e., mininv H(dur(inv))
where dur(inv) is a random variable representing the timing of invocation inv,
conditioned on the invocations and their timings that the adversary has ob-
served so far, and H() denotes entropy. Intuitively, the entropy gives a measure
of how uncertain the adversary is of the resulting timing. There are natural ex-
tensions of this property, e.g., using the average entropy over all invocations,
i.e., avginv H(dur(inv)). However, because the minimum entropy will always be at
most the average entropy, we consider only the former here.

Two observations about the above goals are in order. First, there is a tension
between performance and unpredictability, in that the efficiency requirement lim-
its the degree of unpredictability for which we can hope. Notably, a data structure
of size n that implements invocations in O(f(n)) time for nondecreasing f per-
mits unpredictability (as defined above) of at most log2 O(f(n)) = O(log2 f(n)).
One way to balance these two might leave the timing distribution across invoca-
tions on the data structure unchanged from that of a timing-predictable structure
(to retain efficiency) but make it impossible to predict which invocations would
produce which timings (so that timings are unpredictable).

Second, though neither of the above goals explicitly includes hiding the data
structure state from the adversary, doing so can be helpful to our goals, and some
of our analysis will measure what the adversary can know about that state. One
approach to hide this from the adversary would be to insert a random delay
prior to each invocation response. However, just as such random delays do not
thwart cryptographic timing attacks (these delays can be filtered out statistically
and the keys still recovered), they will only delay an adversary from recovering
the data structure state. An alternative might be to slow all operations to take
the same time, presumably calculated as a function of n. However, this benefits
neither efficiency nor timing unpredictability, our primary goals here.

4 Skip Lists

One goal of this paper is to develop a Set implementation that meets the re-
quirements of Section 3. We do so by building from skip lists, a well-known



www.manaraa.com

implementation of a Set. We first describe the skip-list structure, and then we
discuss its vulnerabilities to timing attacks.

Data structure and algorithm: A skip list is a data structure that can be
used to implement the Set abstract data type [18]. A skip list comprises multiple
non-empty linked lists, denoted list1, . . . , listm, where m ≥ 1 can vary over the
life of the skip list. Each linked list consists of nodes, each with a pointer to its
successor in the list; the successor of node nd is denoted nd.nxt. List listℓ begins
with a head node, denoted head[ℓ]. Each other node in listℓ represents a value
that was inserted into the set; the value of each such node nd is nd.val. The nodes
in each linked list are sorted in increasing order of their values. The first linked
list, list1, includes (a node for) each value inserted into the set. Each listℓ for
1 < ℓ ≤ m contains a subset of the inserted values, and satisfies the following
property: if a value is in listℓ, then it is also a member of listℓ−1, and the node
nd representing v in listℓ contains a pointer nd.down to the node representing v
in listℓ−1. Similarly, head[ℓ].down = head[ℓ − 1].

To lookup v in a skip list, the search begins at the head of the m-th linked
list. It traverses that linked list, returning if it finds v or stopping when it reaches
the last node in the list whose value is strictly less than v. In the latter case,
if the current list is also list1, then it returns ⊥. Otherwise, the search drops to
the next lower linked list and continues as before. An example of a lookup in a
standard skip list is shown in Figure 2.

To remove a value v from a skip list, we navigate to v by the same method.
Once located, we simply remove the nodes representing v from the linked lists.
Any empty linked lists are deleted, and m is adjusted accordingly.

2 3 6 9 14 18 20 26 3228head

Fig. 2. Search path for
lookup(28) in standard skip
list

When inserting a value into the skip
list, we first probabilistically determine its
“height” in the skip list, i.e., the largest value
h ≥ 1 such that listh will contain the new
value. We sample the new height from a dis-
tribution that yields any h with probability
2−h. Once the height of the new value is so
determined, we find the position of the new
value in listh using the same search method as
in the lookup and remove operations. Then we
simply add the new value to the proper locations in lists listh, . . ., list1, creating
new lists (if h > m) and adjusting m as necessary. As such, in expectation only
1/2 of the values are represented in list2, only 1/4 are represented in list3, and
so on. For this reason, a skip list of n values supports lookup, insert and remove

operations in O(log2 n) time with high probability.

Weaknesses: Despite their randomized nature, skip lists are vulnerable to at-
tacks on both predictability and efficiency. Section 6 details how an adversary
can track the distribution of possible skip lists (that is, the distribution of dif-
ferent skip-list configurations that represent the same Set) given access to a skip
list only via invocations and their observed durations. Using this technique, even
an adversary passively observing random lookup invocations can quickly deter-



www.manaraa.com

mine the internal configuration of the skip list. For example, Figure 3 shows the
graph of the average entropy in bits (over 100 runs) of the skip-list distribution
for such an adversary over the course of 25 observed lookup invocations and their
durations on a skip list of size 5.

Fig. 3. Average entropy
of standard skip-list dis-
tributions based on ob-
served lookup durations.
Skip list holds 5 values.

This result illustrates that the randomization that
takes place during an insert operation is not enough to
hide the internal configuration of the skip list from an
adversary. Proposals exist for occasionally rearrang-
ing the entire internal configuration of a skip list,1

but as these methods must operate on each value in
the skip list, they are generally performed only when
there is some other reason for an O(n) operation (e.g.,
enumerating the entire contents of the skip list). We
argue that these methods are insufficient to protect a
skip list for two reasons. First, they are designed to
repair inefficiently balanced skip lists, doing little to
hinder predictability attacks unless they occur very
frequently. Second, an adversary can simply choose not to invoke any opera-
tions that would result in reconfiguration, and reconfiguration is too expensive
to invoke frequently in a proactive manner.

Having sufficiently reduced the entropy of the skip-list distribution, the ad-
versary can trivially predict the timing of future invocations. Moreover, the
adversary can bias the skip-list distribution toward inefficient configurations by
adaptively crafting invocations using observed duration information. Specifically,
an adversary might target values with heights h > 1, removing and re-adding
them until they are inserted at height h = 1. Once the adversary has adjusted
all values with height h > 1 in this way, the skip list will have been reduced to
a linked list with Ω(n) performance.

5 A Timing-Unpredictable Set

In this section we describe ways to counter the weaknesses identified in Section 4,
and then use these to construct a proposed timing-unpredictable Set.
Manipulating the origin: In a standard skip list, every operation begins from
head[m]. We propose in this section to reduce the ability of the adversary to
predict the timing characteristics of future operations by modifying, on a per
operation basis, the starting point of a lookup, insert, or remove. To do so, we
introduce a search origin into the skip list, and this origin will change on a per
operation basis.

Intuitively, the search origin can be thought of as a new value that is inserted
using an operation similar to insert, except that the height h chosen for it is
h = m. Then, rather than starting a search for a value (or location to insert a
new value) from head[m], the search is begun from this origin value’s node in

1 http://en.wikipedia.org/wiki/Skip list#Implementation Details



www.manaraa.com

listm; otherwise the search behaves as normal. In order to enable values smaller
than the origin value to be located, however, we make each linked list circular
(as shown in Figure 4.)

32 14

28

2

26

3

20

6

18

9

Fig. 4. A skip list
with no fixed origin

In practice, it is unnecessary for the origin to be repre-
sented using its own nodes, and doing so would incur heav-
ier operation costs than are necessary. Instead, we define
the origin to be a sequence ond[m], ond[m − 1], . . . , ond[1]
of nodes, each ond[ℓ] being an existing member of listℓ.
Each origin is constructed relative to a particular “tar-
get” value otgt in the skip list. For each 1 ≤ ℓ ≤ m, ond[ℓ]
is the node in listℓ with the largest value less than otgt, or
if there is no node in listℓ with a value less than otgt, then
ond[ℓ] is the node with the largest value in listℓ. A search
from ond[m], ond[m − 1], . . . , ond[1] starts at ond[m], and
if the search is presently at ond[ℓ+1], it proceeds to ond[ℓ]
if stepping to ond[ℓ + 1].nxt would pass the sought value.
The detailed algorithm is provided in Appendix A, and examples are given in
Figure 5.

32 14

28

2

26

3

20

6

18

9

32 14

28

2

26

3

20

6

18

9

The search path
for lookup(6). The
search wraps from
high-valued nodes
to low-value nodes.

The search path
for lookup(28). The
search travels down
by origin nodes
until a move right
has been made.

Fig. 5. Search paths to two different nodes
in a circular skip list; squares (¤) denote
origin nodes placed with respect to otgt = 20

In order to maximize the ad-
versary’s uncertainty as to the
state of the skip list, and hence
to maximize his uncertainty as
to the timing it will exhibit, we
choose a value v uniformly at ran-
dom from the values in the skip
list when establishing a new ori-
gin (relative to v). In order to
select a value uniformly at ran-
dom, we add to each node nd

two additional fields. The first is
nd.skip, which records the num-
ber of values in the skip list
that are “skipped” between nd

and nd.nxt. More precisely, if
nd is in list1, then nd.skip =
1, and otherwise nd.skip =
∑c−1

i=0 nd.down(.nxt)i.skip where (.nxt)i denotes i copies of “.nxt” and c > 0 is
the smallest value satisfying nd.nxt.down = nd.down(.nxt)c. The second field is
nd.idx, which is used only when nd is a part of the origin. It records the abso-
lute index of nd in the skip list. These fields can be maintained in the skip list
across insert and remove operations (and origin changes) with no change in the
asymptotic cost of these operations, as shown in Appendix A.

Given these extra fields, establishing an origin relative to a value otgt selected
uniformly at random in a skip list with n values is achieved as follows: choose a
j ∈ [1, n] at random, and then use the nd.skip and nd.idx values to navigate to



www.manaraa.com

the j-th value in the list (to which otgt will be set) and assemble the new origin
relative to that value. Again, this can be performed with only an additive cost
to the skip-list operation that does not change its asymptotic complexity.
Height adjustment: The second countermeasure to timing predictability that
we employ is to “height adjust” a value in the skip list. Recall that when a value
is inserted into a standard skip list, we probabilistically determine its “height”
in the skip list, i.e., the largest value h ≥ 1 such that listh will contain the new
value, by sampling from a distribution that yields any h with probability 2−h.
When height adjusting a value we simply re-sample from this distribution to
obtain a new height for the value, and then modify linked lists to reflect this
value’s newly chosen height. The effect is equivalent to having removed and then
re-inserted the value. However, since this is accomplished with searching to the
value only once, and without removing nodes that would be re-inserted, it is far
less costly than actually removing and re-inserting the value.
The TUSL skip list: There are many potential ways to combine origin move-
ment and height adjustment to implement skip-list variants that should better
resist an adversary divining and manipulating its structure. For our study in
Sections 6 and 7, we consider the following variant, to which we refer as TUSL
(for “Timing-Unpredictable Skip List”). We designed the TUSL such that its
variations from standard skip lists would introduce only small additional costs
and also not change the asymptotic complexity of the Set operations.
insert To perform an insert(v), first select the height h for the new value. Next,
search for the location of v starting from the origin. If v is not already in the skip
list, insert nodes for v into list1, . . . , listh. Regardless of whether v was already
in the skip list, select a new otgt at random, and move the origin to be relative
to it. If v was already in the skip list, adjust otgt to height h.
remove To perform a remove(v), search for v starting from the origin. If v is
found, remove its nodes from the linked lists. Whether or not v was found, select
a new otgt at random, and move the origin to be relative to it. Finally, height
adjust otgt.
lookup To perform a lookup(v), search for v starting from the origin. After the
return value is determined (v or ⊥), select a new otgt at random, and move the
origin to be relative to it. Finally, height adjust otgt.

Note that each operation selects a height for one value, namely the new otgt

or a newly inserted value. These operations are a small constant factor more
expensive than those of a standard skip list, but we will show in Section 7 that
a TUSL can outperform a standard skip list against an adversary intent on
decaying its performance, even when skip lists are small.

6 Predictability Evaluation

In this section we perform an adversarial evaluation of the extent to which our
TUSL design in Section 5 achieves unpredictability. We begin by presenting how
the adversary can track the distribution on skip lists based on the timing he
observes for each of his invocations. We then present results about the entropy



www.manaraa.com

of this distribution, and then we build on these results to demonstrate the timing
unpredictability of our TUSL construction.

Tracking the skip-list distribution: The timings observed by the adversary
and the skip-list algorithm itself (which he knows), induce a probability distri-
bution on the space of skip lists from his perspective. Let Ii = 〈(inv1, dur(inv1)),
. . ., (invi, dur(invi))〉 denote a sequence of invocations and their durations. Each
invi′ is applied to the skip list Si′−1 (i.e., the skip list resulting from invoca-
tions inv1 . . . invi′−1) in sequence, taking time dur(invi′) (a random variable) and
yielding Si′ (also a random variable). When we use Ii = 〈(inv1, d1), . . ., (invi, di)〉
to denote an event, the event quantifies the durations of the (fixed) invocations
inv1, . . . , invi; i.e., Pr [Ii] is the probability that fixed invocations inv1, . . . , invi

satisfy dur(inv1) = d1, . . ., dur(invi) = di.

To explain how the adversary can track the distribution on TUSLs, i.e., how
he can compute Pr [Si = s | Ii], we introduce the following additional notation.
Let Oi denote the value of otgt at the end of (i.e., chosen in) invi. Let Hi denote
the value of the height chosen in invi; this height is chosen for the value Oi or for
the new value if invi inserted one. Let ni denote the number of values in Si, and
let v1, . . . , vni

denote an enumeration of the values in Si. Then, the adversary
can compute Pr [Si+1 = s′ | Ii+1] inductively as:

∑

s

∞
∑

h=1

ni+1
∑

j=1

(

2−h · Pr [Si = s | Ii] ·
Pr [Si+1 =s′ ∧ dur(invi+1)=di+1 | Si =s ∧ Hi+1 =h ∧ Oi+1 =vj ]

)

∑

s

∞
∑

h=1

ni+1
∑

j=1

(

2−h · Pr [Si = s | Ii] ·
Pr [dur(invi+1) = di+1 | Si = s ∧ Hi+1 = h ∧ Oi+1 = vj ]

)

(1)

We derived this equation as an application of Bayes’ theorem, but we omit its
lengthy derivation here due to space limitations. Note that
Pr [Si+1 = s′ ∧ dur(invi+1) = di+1 | Si = s ∧ Hi+1 = h ∧ Oi+1 = vj ] in the numer-
ator and Pr [dur(invi+1) = di+1 | Si = s ∧ Hi+1 = h ∧ Oi+1 = vj ] in the denom-
inator are either identically 0 or identically 1, in that the conditions and the
invocation unambiguously specify whether Si+1 = s′ and dur(invi+1) = di+1.

In addition to computing a distribution on skip lists on the basis of timings
actually observed from invocations on S, the adversary can also compute poste-
rior distributions conditioned on a hypothetical invocation and the distribution
of timings for that invocation that the prior distribution on skip lists dictates. In
this way, the adversary can compute not only a distribution on the current state
of the skip list, but also can compute the probability that a particular invocation
will yield a particular timing and, thus, the posterior distribution on the skip
list that would result.

Entropy of the skip-list distribution: To provide insight into the results
we report below, we first present tests in which the adversary, when selecting
invi+1, chooses the invocation that minimizes H(Si+1 | Ii), i.e., that minimizes
the entropy of the skip-list distribution that results from the chosen invocation.
We measure H(Si+1 | Ii+1), i.e., the extent to which the adversary succeeds in



www.manaraa.com

minimizing that entropy. Although minimizing the entropy of the skip-list dis-
tribution is not a stated goal in Section 3, this measure provides insight into
the uncertainty that the adversary faces in trying to predict timings for future
invocations or to manipulate the skip list to slow its performance.

In each test, the adversary is launched with an empty skip list and a target
size N . Each run begins by the adversary performing N random insert invoca-
tions, to bring the skip list to its initial size. The adversary monitors the time
that each of these invocations takes, as well as all subsequent invocations. Once
the skip list contains N values, the adversary performs lookup invocations only,
chosen to minimize H(Si+1 | Ii) in each step i + 1. We disallow remove invoca-
tions in these tests, in particular, so that the adversary cannot decrease H(Si | Ii)
simply by removing elements. After performing the lookup invocation and mea-
suring its duration, the adversary updates his skip-list distribution using (1),
and continues with searching for his next invocation, etc. To limit the number of
possible skip lists in our tests, we remove at each step (after the initial N insert

invocations) skip lists with probability less than ǫ = 4−n, where n is the current
skip-list size. (n = N always in the tests of this section.)

In our analysis, the “time” that the adversary measures for an invocation is a
count of skip-list node visits plus, in the case of an insert operation (or a remove,
though again, none of these were performed in the tests in this section), the
changes to linked lists in the skip list. This information is not clouded by other
factors that could influence time measurements and so discloses more precise
information than the adversary might expect in practice.

0 2 4 6 8 10

0.
0

0.
4

0.
8

CDF

Entropy

N=4
N=5
N=6
N=7

Average entropy

N
4 5 6 7

4
5

6
7

Fig. 6. Distribution of H(Si | Ii)

The results of our tests are
shown in Figure 6 for N ∈
{4, 5, 6, 7}. As these figures
show, the average entropy of
a TUSL grows linearly in N
for these values, even when
the adversary chooses the best

next invocation to minimize
that entropy. This observa-
tion provides insight into the
results that will follow.

We were unable to extend past N = 7 in our tests due to the computational
difficulty of doing so. To get a sense of the immensity of these tests — and the
task the adversary faces, as well — consider the following rough calculation for a
distribution on skip lists of size N = 6: The adversary uses (1) to update the skip-
list distribution (from Si to Si+1) to account for a single observed duration. The
summations in the equation occur over each possible TUSL s (typically about
160), all sufficiently plausible heights (we consider only 7 for this example), and
all possible positions for a new otgt (there are N of these). Thus, the inner term
of each summation must be evaluated approximately 160 ∗ 7 ∗ 6 = 6, 720 times.
Also, this calculation must be done once for each s′, meaning that to transform
a distribution for Si into one for Si+1 for a single invocation/duration pair, the



www.manaraa.com

adversary must do 160 ∗ 6, 720 ≈ 1 million calculations. Now consider that the
adversary’s search of next invocations includes N possible lookup invocations,
each with about 30 possible durations. So, even choosing the next invocation to
perform requires examining 6∗30 = 180 possible distributions, and the adversary
must do 180 ∗ 1, 075, 200 ≈ 200 million evaluations of the inner term of (1) to
generate a single sample for the distribution for N = 6 in Figure 6. For the N = 7
plot, the cost jumps to ≈ 750 million evaluations per sample. This computational
cost has limited our ability to scale our tests beyond N = 7 at present.

2 3 4 5 6

0.
0

0.
4

0.
8

CDF

Entropy

N=4
N=5
N=6
N=7

Average entropy

N
4 5 6 7

3.
2

3.
4

3.
6

3.
8

Fig. 7. Distribution of min
invi+1

H(dur(invi+1) | Ii)

Timing unpredictability:
We now move on to tests
in which the adversary at-
tacks timing unpredictability.
These tests were performed
with the same methodology
as those above, except that
the adversary chooses as his
next invocation
arg mininvi+1

H(dur(invi+1) | Ii).
We record H(dur(invi+1) | Ii)
for that invocation invi+1 at
each step, as evidence of the extent to which an adversary can minimize the
timing predictability of the data structure.

0 1 2 3 4 5

0.
4

0.
6

0.
8

1.
0

EMD

NSL

TUSL

N=4
N=5
N=6
N=7

Fig. 8. CDF of EMD
between adversary’s
and actual timing dis-
tributions for invi+1.
NSL = normal skip list.

Figure 7 shows the results of these tests. The plots
show that the timing entropy is less than the entropy
of the skip-list distribution, as can be seen by com-
paring Figures 6 and 7. This occurs because many
different skip-list configurations can give rise to the
same timing for certain invocations, and so not all of
the uncertainty of the skip-list configuration carries
over to uncertainty for timing behavior. Figure 7 sug-
gests that the timing entropy grows roughly linearly
for the range of N that we have been able to explore.
(These tests are limited by the same computational
challenges described earlier.) However, because for an
adversary who does not try to slow the skip-list in-
vocations (or is unable to do so, see Section 7), the
skip-list implements lookup invocations in O(log2 N)
time with high probability, the timing entropy is limited to O(log2 log2 N) as N
grows, as discussed in Section 3.

While mininvi+1
H(dur(invi+1) | Ii) indicates the timing unpredictability of the

data structure, it nevertheless provides little insight into how erroneous the ad-
versary’s view of the timing might be. For example, if the adversary assigns equal
likelihood to two timings for invi+1, we might consider him to be better off if
these timings are both close to the correct answer than if one is wildly incorrect;
H(dur(invi+1) | Ii) does not distinguish between these cases. To further clarify,



www.manaraa.com

in Figure 8 we plot the CDF of the earth mover’s distance (EMD) [19, 20] be-
tween (i) the adversary’s distribution for dur(invi+1) conditioned on Ii and (ii)
the distribution dur(invi+1) for that invocation on the actual skip list that the
adversary is attacking. Intuitively, if each distribution is a way of piling one unit
of dirt, EMD measures the cost (the amount of dirt moved times the distance
it is moved) of turning one distribution into the other. This plot shows that
the uncertainty the adversary faces is not solely due to the randomized imple-
mentation of invi+1 but rather is compounded by the entropy of the skip-list
distribution shown in Figure 6. That is, if the adversary’s skip-list distribution
had no entropy (i.e., if the adversary knew exactly the configuration of the skip
list), his distribution would match the real distribution, and the EMD would be
zero. As can be seen in Figure 8, this is very nearly the case for normal skip lists.

7 Efficiency Evaluation

We now evaluate how TUSLs fare in terms of performance against the adap-
tive adversary of Section 3. Our evaluation is like that of Section 6, with a few
important differences. First, to maximize the invocation times (versus simply
reducing entropy for skip lists of a fixed size or their timing behaviors), the
adversary must be allowed to remove and insert elements. For example, an ad-
versary might prefer to remove an element that he discerns to have a large height
in the skip list, in an effort to make all elements have the same height (which
yields worst-case performance for the skip list). For this reason, in these tests the
adversary also examines remove and insert operations at each step, though we
restrict the adversary to maintaining the size of the skip list in the range N ± 2.
This restriction prevents the adversary from “attacking” efficiency, for example,
by simply always inserting more values. Second, to discern that a remove–insert

pair, for example, might decay the performance of the skip list, it is necessary to
permit the adversary to look ahead multiple moves to find a sequence that best
accomplishes his goals. So, to enable these tests we implement a search for se-
quences of invocations that yield a heuristically optimal attack for the adversary
(albeit while further compounding the cost of computing the attack).
Searching for a nearly optimal attack: Suppose that Ii = 〈(inv1, d1), . . .,
(invi, di)〉 is the sequence of invocations that the adversary performed and the
durations that resulted from them. As shown in (1), the adversary can thus
compute Pr [Si = s | Ii]. The adversary now wishes to predict the next invocation
invi+1 that will lead toward a skip-list configuration in which some operations
are very expensive, thus violating our efficiency goals. To do so, he employs a
function score that, when applied to a sequence Ii+k that extends Ii, produces a
value that indicates the benefit or detriment to the adversary’s goal of reducing
performance. We will describe such a score function below.

The primary component of the adversary’s attack is calculating, for a fixed

sequence of invocations invi+1, . . . , invi+k, the expected outcome:

Einvi+1,...,invi+k
[score(Ii+k) | Ii] =

∑

g

g · Pr [score(Ii+k) = g | Ii] (2)



www.manaraa.com

In (2), it is understood that Ii+k extends Ii with invocations invi+1, . . . , invi+k.
It is, however, treated as a random variable here, taking on durations for the
invocations invi+1, . . . , invi+k.

When choosing invi+1, . . ., invi+k to compute (2), the adversary faces an
apparently difficult problem in that there are infinitely many invocations that
are possible for each invi+k′ . Notably, the adversary can insert any value into
the skip list. However, the adversary need only consider inserting a value after
each value already in the skip list — all insertions between the same two existing
values are equivalent from a timing point of view — yielding ni+k′−1 possible
insert operations for a skip list already containing ni+k′−1 values (i.e., where
ni+k′−1 is the size of Si+k′−1). That is, for each invi+k′ , 1 ≤ k′ ≤ k, the adversary
need only consider ni+k′−1 remove invocations, ni+k′−1 insert invocations, and
ni+k′−1 lookup invocations, i.e., 3ni+k′−1 in total.

Heuristics: There are two remaining choices that an adversary must make to
search for his next invocation to perform: (i) He must decide for which invocation
sequences invi+1, . . ., invi+k to compute Equation (2), and in particular how
many such invocations to consider. (ii) He must choose a score function to guide
his search. We adopt heuristic solutions (described below) to (i) and (ii), and as
such, our search yields only a heuristically optimal choice.

To address (i), we define a function β : N → (0, 1) such that if

Pr
[(

∧k

k′=1 dur(invi+k′ ) = di+k′

) ∣

∣

∣
Ii

]

≤ β(k) for values di+1 . . . di+k, then this

probability is rounded down to zero. Then, only invocation sequences invi+1,
. . ., invi+k for which (2) is nonzero (per this coarsening) need be considered. In
particular, k is not the same across sequences, but rather can be different per
sequence. The intuitive justification for such a use of β is that durations for
invocation sequences invi+1, . . ., invi+k that are so improbable are not interest-
ing to the adversary. In our tests below, β is determined empirically to strike
a balance between exploring as many invocation sequences invi+1, . . ., invi+k

as possible and limiting search time. Moreover, β was set differently for TUSL
adversaries and adversaries attacking a standard skip list to allow a TUSL adver-
sary substantially more time to search for an effective next invocation. In fact,
the average time allotted to the adversary to search for his next invocation was
more than three orders of magnitude larger for the TUSL adversary, per value of
N . As such, the results reported below that demonstrate advantages over basic
skip lists are very conservative in this regard.

To address (ii), the adversary scores Ii+k on the basis of the expected dura-
tion it induces for the most expensive subsequent invocation, i.e., score(Ii+k) =
maxinvi+k+1

E [dur(invi+k+1) | Ii+k]. When his search concludes, he chooses the
next invocation invi+1 to actually perform to be the most promising next invo-
cation, specifically argmaxinvi+1

∑

invi+2,...,invi+k
Einvi+1,...,invi+k

[score(Ii+k) | Ii],

where the sum is taken over maximal sequences for which (2) was computed.

Results: After observing the i-th invocation duration, suppose the adversary
outputs arg maxinvi+1

E [dur(invi+1) | Ii], i.e., the invocation the adversary be-
lieves to be the most expensive. Figure 9 plots E [dur(inv)] for this invocation
inv, for the current state of the actual skip list he is attacking, averaged over



www.manaraa.com

all runs, as a measure of performance. (◦ denotes a standard skip list, and +
denotes a TUSL.) Figure 9 also shows the average performance of randomly

selected invocations (where × and ⋄ denote standard skip lists and TUSLs, re-
spectively). Together these curves show that the adversary can cause his chosen
invocations for a standard skip list to diverge in cost from random invocations.
In contrast, the adversary is unsuccessful in causing this divergence with TUSLs,
despite expending three orders of magnitude more effort. A consequence is that
the adversary can quickly decay a standard skip list, even of size as small as
7 ± 2, to performance that is comparable to or worse than that to which the
adversary can decay a TUSL, which appears to be little to none. As N grows,
we expect these trends to continue, with the adversary maintaining average-case
(O(log2 N)) performance against TUSLs and worst-case performance (O(N))
against standard skip lists, such that the TUSL should soon easily outperform
a standard skip list during an attack.

8 Conclusion

2 4 6 8 10

6
8

10
12

14

N=4

Invocation number
2 4 6 8 10

6
8

10
12

14

N=7

Invocation number

Fig. 9. Average expected invocation duration
after the first N inserts. ◦: standard skip list;
×: standard skip list, random invocations; +:
TUSL; ⋄: TUSL, random invocations

This paper is, to our knowl-
edge, the first exploration of
constructing data structures
that will make it difficult for
an adversary with adaptive
access to the structure to pre-
dict the duration of future
invocations or to manipulate
the data structure to decay
its efficiency. We presented
a design for a Set abstract
data type based on skip lists
but enhanced to permit both
searching for a value from a random origin and adjusting the height of a value’s
nodes per operation. We presented an instance of this design, called TUSL, which
we showed offers benefits to both timing-unpredictability and efficiency against
adaptive adversaries. To do so, we developed a framework that permits an ad-
versary to track a distribution on skip lists implied by the invocation durations
he has observed so far and to search for invocations that heuristically maximize
his effectiveness in attacking efficiency or unpredictability.

As far as we are aware, this paper opens up a new research direction that
could help to counteract a range of timing-related attacks, both known (e.g., [1–
5]) and as-yet-unknown. Numerous areas remain unexplored, such as more formal
foundations for the goal of timing unpredictability, and other designs for timing-
unpredictable data structures.

Acknowledgements: This work was funded in part by NSF grant CNS-0756998.
We are grateful to the security group at UNC for suggestions for improving this
work, and to the anonymous reviewers for their comments.



www.manaraa.com

References

1. McIlroy, M.D.: A killer adversary for quicksort. Software – Practice and Experience
29 (April 1999) 341–344

2. Fisk, M., Varghese, G.: Fast content-based packet handling for intrusion detection.
Technical Report CS2001-0670, University of California at San Diego (May 2001)

3. Crosby, S.A., Wallach, D.S.: Denial of service via algorithmic complexity attacks.
In: Proceedings of the 12th USENIX Security Symposium. (August 2003)

4. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Advances in Cryptology – CRYPTO ’96. (August 1996)

5. Brumley, D., Boneh, D.: Remote timing attacks are practical. Computer Networks:
The International Journal of Computer and Telecommunications Networking 48(5)
(August 2005) 701–716

6. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3)
(1985) 652–686

7. Adelson-Velskii, G., Landis, E.M.: An algorithm for the organization of informa-
tion. Proceedings of the USSR Academy of Sciences 146 (1962) 263–266 (Russian)
English translation by M. J. Ricci in Soviet Math. Doklady 3:1259–1263, 1962.

8. Seidel, R., Informatik, F., Aragon, C.R.: Randomized search trees. In: Algorith-
mica. (1989) 540–545

9. Carter, J.L., Wegman, M.N.: Universal classes of hash functions (extended ab-
stract). In: STOC ’77: Proceedings of the ninth annual ACM symposium on Theory
of computing, New York, NY, USA, ACM (1977) 106–112

10. Bagchi, A., Buchsbaum, A.L., Goodrich, M.T.: Biased skip lists. Algorithmica 42

(2005) 2005

11. Cho, S., Sahni, S.: Biased leftist trees and modified skip lists. Technical Report
96-002, University of Florida (1996)

12. Ergun, F., Ahinalp, S.C.S., Sinha, R.K.: Biased skip lists for highly skewed access
patterns. In: In Proceedings of the 3rd Workshop on Algorithm Engineering and
Experiments, Springer (2001) 216–29

13. Pugh, W.: A skip list cookbook. Technical Report UMIACS-TR-89-72.1, University
of Maryland (1990)

14. Aspnes, J.: Skip graphs. In: Proceedings of the fourteenth annual ACM-SIAM
symposium on Discrete algorithms. (2003) 384–393

15. Messeguer, X.: Skip trees, an alternative data structure to skip lists in a concurrent
approach. Informatique Théorique et Applications 31(3) (1997) 251–269

16. Pugh, W.: Concurrent maintenance of skip lists. Technical Report CS-TR-2222.1,
University of Maryland (1989)

17. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press (1998)

18. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Communications
of the ACM 33(6) (June 1990) 668–676

19. Mallows, C.L.: A note on asymptotic joint normality. Annals of Mathematical
Statistics 43(2) (1972) 508–515

20. Elizaveta, L., Bickel, P.: The earth mover’s distance is the Mallows distance: Some
insights from statistics. In: Proceedings of the 8th International Conference on
Computer Vision. (2001) 251–256



www.manaraa.com

A Implementing a moving origin

In Section 5, we introduced a primitive that we use in our TUSL implementa-
tion, namely manipulating the search origin per operation. We first detail the
lookup operation that performs a search using such an origin. Then, we detail
the maintenance of the nd.skip and nd.idx fields, which can be used to locate a
value in the skip list uniformly at random, relative to which the new origin will
be placed. In this section, we show each of these can be achieved during skip-list
operations without an asymptotic increase in running time.

A.1 Searching from the origin

lookup(v)

100: ℓ ← m;
101: nd ← ond[m];
102: while true do

103: if (nd.nxt.val < v < otgt ∧ nd.nxt.val < nd.val)
∨ (nd.nxt.val < v < otgt ∧ nd.nxt.val = nd.val

∧ departed = false)
∨ (nd.val < nd.nxt.val < v ∧ nd 6= ond[ℓ])
∨ (nd.val < nd.nxt.val < v ∧ departed = false) then

104: nd ← nd.nxt;
105: departed ← true;
106: else if nd.nxt.val = v then

107: return v;
108: else if ℓ > 1 then

109: ℓ ← ℓ − 1;
110: if departed = false then

111: nd ← ond[ℓ];
112: else

113: nd ← nd.down;
114: end if

115: else

116: return ⊥;
117: end if

118: end while

Fig. 10. Pseudocode for lookup(v) using origin
ond[m], . . . , ond[1], chosen with respect to otgt

Conducting a search for
a value from a randomly se-
lected origin proceeds much
like a search in a standard
skip list; we provide pseu-
docode in Figure 10. There
are two notable changes in
the algorithm from that of a
standard skip list. First, the
lookup algorithm changes to
account for wrapping to the
beginning of a linked list; this
is detected with the condi-
tion nd.nxt.val < nd.val in the
first disjunct of line 103. In
this case, the algorithm wraps
to the beginning of the list
(line 104) only if v is not
the beginning (nd.nxt.val <
v) and if v occurs before the
value with respect to which the origin was previously placed (v < otgt). An-
other case that causes nd to advance on the linked list is the second disjunct
in line 103, in which nd is the only node in this linked list (nd.nxt.val = nd.val)
and no moves along any linked list (line 104) have yet occurred (see also line
105). The third and fourth disjuncts in line 103 cover cases in which advancing
on this linked list does not wrap (nd.val < nd.nxt.val) and will not exceed the
target value (nd.nxt.val < v).

The second notable change from this operation for a standard skip list is
that when descending to a lower linked list (line 109–114), descent follows origin
nodes (line 111) until the origin is departed in the search (departed = true).
Examples of this search algorithm are given in Figure 5. This search is of the
same time complexity as the original, O(log2n).



www.manaraa.com

A.2 The nd.skip field

Each node nd in the skip list contains a field nd.skip which stores the number of
values which would be “skipped” by following the link nd.nxt. Intuitively, nd.skip
is the number of values in the skip list greater than or equal to nd.val but less
than nd.nxt.val, though this count can also wrap around the edge of the skip list.
Because the value of nd.skip depends only on the membership of each listℓ and
not on the origin nodes, it suffices to show that we can maintain it across insert

operations, remove operations, and height adjustments.

insert(v)

200: ℓ ← m;
201: nd ← ond[m];
202: h ← ChooseNewHeight();
203: Array new nd[h] ← Init(v,h);
204: Array anode[m];
205: Array anodesum[m] ← [0, 0, . . . , 0, 1];
206: while ℓ ≥ 1 do

207: if (nd.nxt.val < v < otgt ∧ nd.nxt.val < nd.val)
∨ (nd.nxt.val < v < otgt ∧ nd.nxt.val = nd.val

∧ departed = false)
∨ (nd.val < nd.nxt.val < v ∧ nd 6= ond[ℓ])
∨ (nd.val < nd.nxt.val < v ∧ departed = false) then

208: if ℓ 6= m then

209: anodesum[ℓ + 1] ← anodesum[ℓ + 1] + nd.skip

210: end if

211: nd ← nd.nxt;
212: departed ← true;
213: else

214: ℓ ← ℓ − 1;
215: /* if ℓ < h, create new nd[ℓ + 1] as nd.nxt */
216: if departed = false then

217: if ℓ > 0 then

218: nd ← ond[ℓ];
219: end if

220: anode[ℓ + 1] ← ond[ℓ + 1];
221: else

222: anode[ℓ + 1] ← nd;
223: nd ← nd.down;
224: end if

225: end if

226: end while

227: ℓ ← 1;
228: while ℓ < m do

229: anodesum[ℓ + 1] ← anodesum[ℓ + 1] + anodesum[ℓ]
230: ℓ ← ℓ + 1
231: end while

232: while ℓ > 1 do

233: if ℓ > h then

234: anode[ℓ].skip ← anode[ℓ].skip + 1
235: else

236: new nd[ℓ].skip ← anode[ℓ].skip − anodesum[ℓ] + 1
237: anode[ℓ].skip ← anodesum[ℓ]
238: end if

239: ℓ ← ℓ − 1
240: end while

Fig. 11. Partial pseudocode for insert(v).

Figure 11 gives pseu-
docode for the operation
insert(v), where the v is in-
serted with height h. The ar-
ray new nd[h] of new nodes
is initialized in line 203 by
Init(), which creates h new
nodes new nd[h] . . . new nd[1]
where new nd[ℓ].val = v and
new nd[ℓ].down = new nd[ℓ −
1] for 1 < ℓ ≤ h. For the
purposes of clarity, the algo-
rithm as shown assumes that
v is not already in the TUSL,
and we condense the work of
correctly setting new nd[ℓ].nxt

into a comment in line 215. In
addition, we omit those parts
of the algorithm that move
the origin and those that han-
dle the case when h > m, as
these are irrelevant to the cal-
culations for the nd.skip fields.

The algorithm is similar to
the one in Figure 10 but has
a few key differences. First, it
allocates two arrays of size m
called anode[] and anodesum[].
The first is an array of nodes
which were the last nodes tra-
versed in each row on the path
to v. That is, anode[ℓ] is the
node that would be assigned
to ond[ℓ] if otgt were v. The
second array accumulates nd.skip values along each row ℓ on the path to v, but
only for nodes which are not anode[ℓ]. If ℓ > h, the new value for anode[ℓ].skip



www.manaraa.com

will be simply be one more than the old value (line 234). But if ℓ ≤ h, the new

value for anode[ℓ].skip is anode[ℓ].skip =
∑ℓ

i=1 anodesum[i].

The while loop beginning on line 228 computes this sum for all rows ℓ, storing
the result in anodesum[ℓ]. Finally, the while loop beginning at line 232 updates
anode[ℓ].skip appropriately. Each of these loops runs only m iterations, so they
do not increase the asymptotic running time.

The algorithm for remove(v) is simpler: we search for the value as in Figure 10,
except that we proceed until reaching list1 (as in Figure 11). If the value v is not
in the current row (h < ℓ), then simply decrement anode[ℓ].skip by 1. Otherwise,
each time we find a node such that nd.nxt.val = v, we know that the node nd.nxt

is set for removal. Therefore, the node nd will “inherit” all the nodes that used
to be “skipped” by traversing nd.nxt. Adding these two values (and subtracting
one for the node to be removed), we see that

nd.skip = nd.skip + nd.nxt.skip − 1

300: ℓ ← m

301: nd ← ond[m]
302: c ← ond[m].idx

303: while ℓ > 1 do

304: if ((c + nd.skip) mod n < j < otgtindex

∧ (c + nd.skip) mod n < c)
∨ ((c + nd.skip) mod n < j < otgtindex

∧ (c + nd.skip) mod n = c ∧ departed = false)
∨ (c < (c + nd.skip) mod n < j ∧ nd 6= ond[ℓ])
∨ (c < (c + nd.skip) mod n < j

∧ departed = false) then

305: nd ← nd.nxt

306: departed ← true

307: c ← (c + nd.skip) mod n

308: else

309: ℓ ← ℓ − 1
310: if departed = false then

311: nd ← ond[ℓ]
312: c ← ond[ℓ].idx

313: else

314: ond[ℓ + 1] ← nd

315: ond[ℓ + 1].idx ← c

316: nd ← nd.down

317: end if

318: end if

319: end while

320: otgtindex ← j

Fig. 12. Pseudocode for moving origin to j.

Finally, when doing height
adjustments for a particular
value, we can use elements
of the insert and remove ver-
sions of the algorithm. That
is, when a value is adjusted
to have greater height, the al-
gorithm behaves like a par-
tial insert. When a value is ad-
justed to have a lesser height,
the algorithm behaves like a
partial remove.

A.3 The nd.idx field

In order to locate a specific in-
dex in the skip list (i.e., the
ith element, regardless of its
value), we augment each node
in the skip list with a field
called nd.idx. This field stores
the absolute index of the node
nd. We will only reference this value for origin nodes. We will also define otgtindex

as the index relative to which we place the origin.

Locating a new origin index (called j here to avoid confusion with the previ-
ous otgtindex) proceeds very much like the algorithm in Figure 10, except that
instead of making decisions based on values at certain nodes, we decide based on
indices at those nodes. As such, the new algorithm (shown in Figure 12) uses the
current index c, rather than the current value nd.val. When considering a move



www.manaraa.com

along nd.nxt, we examine the index of nd.nxt — which is (c + nd.skip) mod n —
rather than nd.nxt.val. We use otgtindex instead of otgt.

Finally, maintaining these nd.idx fields is relatively simple. Because these
fields track a value’s absolute index in the skip list, they change only as a result
of an insert or remove operation and are unaffected by height changes. The algo-
rithm is as follows: when a new value v is added to the skip list, all origin nodes
ond[ℓ] with values ond[ℓ].val > v increment their indices by one. If otgt > v,
otgtindex is also incremented. When a value v is removed from the skip list, all
origin nodes ond[ℓ] with values ond[ℓ].val > v decrement their indices by one.
If otgt > v, otgtindex is also decremented. These adjustments represent another
loop of order m, which again does not increase the asymptotic running time of
the algorithm.


